Copied to
clipboard

G = C42.179D4order 128 = 27

161st non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.179D4, C23.481C24, C22.1962- 1+4, (C2×Q8)⋊11Q8, C428C4.37C2, C2.20(Q83Q8), C4.104(C22⋊Q8), (C2×C42).575C22, (C22×C4).111C23, C22.322(C22×D4), C22.116(C22×Q8), (C22×Q8).440C22, C2.66(C22.19C24), C23.78C23.9C2, C23.63C23.29C2, C23.65C23.58C2, C23.83C23.17C2, C23.67C23.43C2, C2.C42.215C22, C2.45(C22.50C24), C2.27(C23.38C23), (C2×C4×Q8).37C2, (C2×C4).58(C2×Q8), C2.39(C2×C22⋊Q8), (C2×C4).1197(C2×D4), (C2×C4).156(C4○D4), (C2×C4⋊C4).327C22, C22.357(C2×C4○D4), SmallGroup(128,1313)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.179D4
C1C2C22C23C22×C4C2×C42C2×C4×Q8 — C42.179D4
C1C23 — C42.179D4
C1C23 — C42.179D4
C1C23 — C42.179D4

Generators and relations for C42.179D4
 G = < a,b,c,d | a4=b4=c4=1, d2=b2, ab=ba, cac-1=a-1b2, dad-1=ab2, cbc-1=dbd-1=b-1, dcd-1=a2b2c-1 >

Subgroups: 372 in 234 conjugacy classes, 112 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4×Q8, C22×Q8, C428C4, C23.63C23, C23.65C23, C23.67C23, C23.78C23, C23.83C23, C2×C4×Q8, C42.179D4
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C22⋊Q8, C22×D4, C22×Q8, C2×C4○D4, 2- 1+4, C2×C22⋊Q8, C22.19C24, C23.38C23, C22.50C24, Q83Q8, C42.179D4

Smallest permutation representation of C42.179D4
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 12 21 43)(2 9 22 44)(3 10 23 41)(4 11 24 42)(5 56 40 26)(6 53 37 27)(7 54 38 28)(8 55 39 25)(13 64 48 70)(14 61 45 71)(15 62 46 72)(16 63 47 69)(17 30 52 60)(18 31 49 57)(19 32 50 58)(20 29 51 59)(33 74 125 108)(34 75 126 105)(35 76 127 106)(36 73 128 107)(65 120 99 94)(66 117 100 95)(67 118 97 96)(68 119 98 93)(77 82 103 116)(78 83 104 113)(79 84 101 114)(80 81 102 115)(85 90 111 124)(86 91 112 121)(87 92 109 122)(88 89 110 123)
(1 74 6 89)(2 107 7 122)(3 76 8 91)(4 105 5 124)(9 128 54 109)(10 35 55 86)(11 126 56 111)(12 33 53 88)(13 114 58 99)(14 83 59 68)(15 116 60 97)(16 81 57 66)(17 118 62 103)(18 95 63 80)(19 120 64 101)(20 93 61 78)(21 108 37 123)(22 73 38 92)(23 106 39 121)(24 75 40 90)(25 112 41 127)(26 85 42 34)(27 110 43 125)(28 87 44 36)(29 98 45 113)(30 67 46 82)(31 100 47 115)(32 65 48 84)(49 117 69 102)(50 94 70 79)(51 119 71 104)(52 96 72 77)
(1 115 21 81)(2 82 22 116)(3 113 23 83)(4 84 24 114)(5 65 40 99)(6 100 37 66)(7 67 38 97)(8 98 39 68)(9 77 44 103)(10 104 41 78)(11 79 42 101)(12 102 43 80)(13 73 48 107)(14 108 45 74)(15 75 46 105)(16 106 47 76)(17 85 52 111)(18 112 49 86)(19 87 50 109)(20 110 51 88)(25 93 55 119)(26 120 56 94)(27 95 53 117)(28 118 54 96)(29 89 59 123)(30 124 60 90)(31 91 57 121)(32 122 58 92)(33 61 125 71)(34 72 126 62)(35 63 127 69)(36 70 128 64)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,12,21,43)(2,9,22,44)(3,10,23,41)(4,11,24,42)(5,56,40,26)(6,53,37,27)(7,54,38,28)(8,55,39,25)(13,64,48,70)(14,61,45,71)(15,62,46,72)(16,63,47,69)(17,30,52,60)(18,31,49,57)(19,32,50,58)(20,29,51,59)(33,74,125,108)(34,75,126,105)(35,76,127,106)(36,73,128,107)(65,120,99,94)(66,117,100,95)(67,118,97,96)(68,119,98,93)(77,82,103,116)(78,83,104,113)(79,84,101,114)(80,81,102,115)(85,90,111,124)(86,91,112,121)(87,92,109,122)(88,89,110,123), (1,74,6,89)(2,107,7,122)(3,76,8,91)(4,105,5,124)(9,128,54,109)(10,35,55,86)(11,126,56,111)(12,33,53,88)(13,114,58,99)(14,83,59,68)(15,116,60,97)(16,81,57,66)(17,118,62,103)(18,95,63,80)(19,120,64,101)(20,93,61,78)(21,108,37,123)(22,73,38,92)(23,106,39,121)(24,75,40,90)(25,112,41,127)(26,85,42,34)(27,110,43,125)(28,87,44,36)(29,98,45,113)(30,67,46,82)(31,100,47,115)(32,65,48,84)(49,117,69,102)(50,94,70,79)(51,119,71,104)(52,96,72,77), (1,115,21,81)(2,82,22,116)(3,113,23,83)(4,84,24,114)(5,65,40,99)(6,100,37,66)(7,67,38,97)(8,98,39,68)(9,77,44,103)(10,104,41,78)(11,79,42,101)(12,102,43,80)(13,73,48,107)(14,108,45,74)(15,75,46,105)(16,106,47,76)(17,85,52,111)(18,112,49,86)(19,87,50,109)(20,110,51,88)(25,93,55,119)(26,120,56,94)(27,95,53,117)(28,118,54,96)(29,89,59,123)(30,124,60,90)(31,91,57,121)(32,122,58,92)(33,61,125,71)(34,72,126,62)(35,63,127,69)(36,70,128,64)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,12,21,43)(2,9,22,44)(3,10,23,41)(4,11,24,42)(5,56,40,26)(6,53,37,27)(7,54,38,28)(8,55,39,25)(13,64,48,70)(14,61,45,71)(15,62,46,72)(16,63,47,69)(17,30,52,60)(18,31,49,57)(19,32,50,58)(20,29,51,59)(33,74,125,108)(34,75,126,105)(35,76,127,106)(36,73,128,107)(65,120,99,94)(66,117,100,95)(67,118,97,96)(68,119,98,93)(77,82,103,116)(78,83,104,113)(79,84,101,114)(80,81,102,115)(85,90,111,124)(86,91,112,121)(87,92,109,122)(88,89,110,123), (1,74,6,89)(2,107,7,122)(3,76,8,91)(4,105,5,124)(9,128,54,109)(10,35,55,86)(11,126,56,111)(12,33,53,88)(13,114,58,99)(14,83,59,68)(15,116,60,97)(16,81,57,66)(17,118,62,103)(18,95,63,80)(19,120,64,101)(20,93,61,78)(21,108,37,123)(22,73,38,92)(23,106,39,121)(24,75,40,90)(25,112,41,127)(26,85,42,34)(27,110,43,125)(28,87,44,36)(29,98,45,113)(30,67,46,82)(31,100,47,115)(32,65,48,84)(49,117,69,102)(50,94,70,79)(51,119,71,104)(52,96,72,77), (1,115,21,81)(2,82,22,116)(3,113,23,83)(4,84,24,114)(5,65,40,99)(6,100,37,66)(7,67,38,97)(8,98,39,68)(9,77,44,103)(10,104,41,78)(11,79,42,101)(12,102,43,80)(13,73,48,107)(14,108,45,74)(15,75,46,105)(16,106,47,76)(17,85,52,111)(18,112,49,86)(19,87,50,109)(20,110,51,88)(25,93,55,119)(26,120,56,94)(27,95,53,117)(28,118,54,96)(29,89,59,123)(30,124,60,90)(31,91,57,121)(32,122,58,92)(33,61,125,71)(34,72,126,62)(35,63,127,69)(36,70,128,64) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,12,21,43),(2,9,22,44),(3,10,23,41),(4,11,24,42),(5,56,40,26),(6,53,37,27),(7,54,38,28),(8,55,39,25),(13,64,48,70),(14,61,45,71),(15,62,46,72),(16,63,47,69),(17,30,52,60),(18,31,49,57),(19,32,50,58),(20,29,51,59),(33,74,125,108),(34,75,126,105),(35,76,127,106),(36,73,128,107),(65,120,99,94),(66,117,100,95),(67,118,97,96),(68,119,98,93),(77,82,103,116),(78,83,104,113),(79,84,101,114),(80,81,102,115),(85,90,111,124),(86,91,112,121),(87,92,109,122),(88,89,110,123)], [(1,74,6,89),(2,107,7,122),(3,76,8,91),(4,105,5,124),(9,128,54,109),(10,35,55,86),(11,126,56,111),(12,33,53,88),(13,114,58,99),(14,83,59,68),(15,116,60,97),(16,81,57,66),(17,118,62,103),(18,95,63,80),(19,120,64,101),(20,93,61,78),(21,108,37,123),(22,73,38,92),(23,106,39,121),(24,75,40,90),(25,112,41,127),(26,85,42,34),(27,110,43,125),(28,87,44,36),(29,98,45,113),(30,67,46,82),(31,100,47,115),(32,65,48,84),(49,117,69,102),(50,94,70,79),(51,119,71,104),(52,96,72,77)], [(1,115,21,81),(2,82,22,116),(3,113,23,83),(4,84,24,114),(5,65,40,99),(6,100,37,66),(7,67,38,97),(8,98,39,68),(9,77,44,103),(10,104,41,78),(11,79,42,101),(12,102,43,80),(13,73,48,107),(14,108,45,74),(15,75,46,105),(16,106,47,76),(17,85,52,111),(18,112,49,86),(19,87,50,109),(20,110,51,88),(25,93,55,119),(26,120,56,94),(27,95,53,117),(28,118,54,96),(29,89,59,123),(30,124,60,90),(31,91,57,121),(32,122,58,92),(33,61,125,71),(34,72,126,62),(35,63,127,69),(36,70,128,64)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4Z4AA4AB4AC4AD
order12···24···44···44444
size11···12···24···48888

38 irreducible representations

dim111111112224
type+++++++++--
imageC1C2C2C2C2C2C2C2D4Q8C4○D42- 1+4
kernelC42.179D4C428C4C23.63C23C23.65C23C23.67C23C23.78C23C23.83C23C2×C4×Q8C42C2×Q8C2×C4C22
# reps1142222244122

Matrix representation of C42.179D4 in GL6(𝔽5)

030000
200000
001000
000100
000043
000011
,
040000
100000
004000
000400
000010
000001
,
010000
100000
002000
003300
000030
000022
,
200000
030000
003100
002200
000010
000001

G:=sub<GL(6,GF(5))| [0,2,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,1,0,0,0,0,3,1],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,3,0,0,0,0,0,3,0,0,0,0,0,0,3,2,0,0,0,0,0,2],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,2,0,0,0,0,1,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C42.179D4 in GAP, Magma, Sage, TeX

C_4^2._{179}D_4
% in TeX

G:=Group("C4^2.179D4");
// GroupNames label

G:=SmallGroup(128,1313);
// by ID

G=gap.SmallGroup(128,1313);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,456,758,723,352,675,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a*b^2,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=a^2*b^2*c^-1>;
// generators/relations

׿
×
𝔽